🔴 Сложный ⏱️ 25 минут

Свойства показательной функции

Свойства показательной функции

🎯 Зачем это нужно?

Показательная функция - это математическая “суперзвезда”! 🌟 Она описывает самые важные процессы вокруг нас:

📱 Вирусное видео на TikTok: количество просмотров растет по показательному закону - сначала 10 лайков, потом 100, потом 10 000!

🦠 Распространение эпидемий: каждый заражённый заражает ещё двоих, те заражают ещё четверых… Именно поэтому карантины так важны!

💰 Криптовалюты: цена Bitcoin может вырасти в геометрической прогрессии (и упасть тоже!)

🔋 Разряд батареи: твой телефон теряет заряд не линейно - сначала медленно, потом всё быстрее

💡 Интуиция

Представь магический банк, где твой вклад каждый день удваивается 🏦. Положил 1 рубль:

  • День 1: 2 рубля
  • День 2: 4 рубля
  • День 3: 8 рублей
  • День 10: 1024 рубля!

Это и есть показательная функция y = 2ˣ. Она растёт не просто быстро - она растёт всё быстрее!

[МЕДИА: image_01] Описание: Сравнение графиков линейной и показательной функций, показывающее экспоненциальный рост Промпт: “educational graph comparison showing linear function y=x and exponential function y=2^x, dramatic difference in growth rates, colorful curves, coordinate grid, modern mathematical visualization style”

А что если основание меньше 1? Тогда функция y = (1/2)ˣ будет “угасать” - как радиоактивный распад или остывание кофе ☕

📐 Формальное определение

Показательная функция имеет вид y = aˣ, где:

  • a > 0 (основание всегда положительное!)
  • a ≠ 1 (иначе функция превращается в константу)
  • x ∈ ℝ (показатель может быть любым!)

🔍 Основные свойства

1️⃣ Область определения и значений

  • D(f) = ℝ (можем подставить любое x)
  • E(f) = (0; +∞) (результат всегда положительный!)

Почему y > 0? Потому что положительное число в любой степени остаётся положительным!

2️⃣ Поведение функции зависит от основания

[МЕДИА: image_02] Описание: Два графика показательных функций с основанием больше и меньше 1 Промпт: “side-by-side comparison of exponential functions y=2^x and y=(1/2)^x, showing increasing and decreasing behavior, clear axis labels, different colors for each curve, educational style”

🟢 Если a > 1: функция возрастает

  • При x → +∞: y → +∞ (взлетает в небо!)
  • При x → -∞: y → 0 (приближается к оси X)

🔴 Если 0 < a < 1: функция убывает

  • При x → +∞: y → 0 (затухает)
  • При x → -∞: y → +∞ (взлетает влево)

3️⃣ Важные точки

  • При x = 0: y = a⁰ = 1 (все графики проходят через (0;1)!)
  • При x = 1: y = a¹ = a (проходят через (1;a))

4️⃣ Асимптота

Ось X (y = 0) - горизонтальная асимптота. График приближается к ней, но никогда не касается!

🔍 Примеры с разбором

Пример 1: Исследуем y = 3ˣ

Шаг 1: a = 3 > 1, значит функция возрастает Шаг 2: Найдём несколько точек:

  • x = -2: y = 3⁻² = 1/9 ≈ 0.11
  • x = -1: y = 3⁻¹ = 1/3 ≈ 0.33
  • x = 0: y = 3⁰ = 1
  • x = 1: y = 3¹ = 3
  • x = 2: y = 3² = 9

Видишь, как быстро растёт? От 1 до 9 всего за два шага!

Пример 2: Сравним скорость роста

У тебя есть два предложения о работе на каникулах:

  • Вариант А: 1000 рублей в первый день, каждый день +1000 (линейный рост)
  • Вариант Б: 1 рубль в первый день, каждый день удваивается

День 10:

  • Вариант А: 10 000 рублей
  • Вариант Б: 2¹⁰ = 1024 рубля

День 20:

  • Вариант А: 20 000 рублей
  • Вариант Б: 2²⁰ = 1 048 576 рублей! 🤑

Вот сила показательного роста!

🎮 Практика

Базовый уровень 🟢

Задание 1: Определи, возрастает или убывает функция: a) y = 5ˣ
b) y = (0.3)ˣ
c) y = (√2)ˣ

✅ Ответ a) Возрастает (5 > 1) b) Убывает (0.3 < 1) c) Возрастает (√2 ≈ 1.414 > 1)

Задание 2: Найди значение функции y = 2ˣ при: a) x = 3
b) x = -4
c) x = 0

✅ Ответ a) y = 2³ = 8 b) y = 2⁻⁴ = 1/16 = 0.0625 c) y = 2⁰ = 1

Задание 3: Какие точки лежат на графике y = 4ˣ? a) (2; 16)
b) (0; 4)
c) (-1; 0.25)

✅ Ответ a) Да: 4² = 16 b) Нет: при x = 0 получаем y = 1, а не 4 c) Да: 4⁻¹ = 1/4 = 0.25

Задание 4: При каких значениях a функция y = aˣ убывает?

✅ Ответ При 0 < a < 1

Продвинутый уровень 🟡

Задание 5: Реши уравнение 2ˣ = 16

💡 Подсказка Представь 16 как степень двойки!
✅ Ответ 16 = 2⁴, значит x = 4

Задание 6: Сравни числа без калькулятора: a) 3⁵ и 5³
b) 2⁸ и 4⁴

✅ Ответ a) 3⁵ = 243, 5³ = 125, значит 3⁵ > 5³ b) 2⁸ = 256, 4⁴ = (2²)⁴ = 2⁸ = 256, значит равны!

Задание 7: Найди область значений функции y = 3ˣ - 2

✅ Ответ E(f) = (-2; +∞), так как 3ˣ > 0, значит 3ˣ - 2 > -2

Задание 8: При каких x выполняется неравенство (1/2)ˣ > 4?

💡 Подсказка Функция убывает, а 4 = (1/2)⁻²
✅ Ответ x < -2

Челлендж 🔴

Задание 9: В популярной игре количество игроков удваивается каждую неделю. Сейчас играет 1000 человек. Сколько будет через 2 месяца?

✅ Ответ 2 месяца ≈ 8 недель, значит N = 1000 · 2⁸ = 256 000 игроков

Задание 10: Реши систему: {2ˣ + 2ʸ = 6 {2ˣ · 2ʸ = 8

💡 Подсказка Замени 2ˣ = u, 2ʸ = v
✅ Ответ u = 4, v = 2 (или наоборот), значит x = 2, y = 1

⚠️ Частые ошибки

Ошибка: Думать, что aˣ может быть отрицательным ✅ Правильно: aˣ > 0 всегда (при a > 0) 💡 Почему: Положительное число в любой степени положительно

Ошибка: Путать возрастание/убывание
Правильно: a > 1 → возрастает, 0 < a < 1 → убывает 💡 Почему: Если основание больше 1, то с ростом степени результат увеличивается

Ошибка: Забывать про асимптоту ✅ Правильно: График никогда не касается оси X 💡 Почему: aˣ никогда не равно нулю

Ошибка: Не учитывать ограничения на основание ✅ Правильно: a > 0 и a ≠ 1 обязательно!
💡 Почему: При a ≤ 0 или a = 1 теряются основные свойства

🎓 Главное запомнить

✅ Показательная функция: y = aˣ, где a > 0, a ≠ 1 ✅ При a > 1 возрастает, при 0 < a < 1 убывает
✅ Область значений: (0; +∞), все графики проходят через (0; 1) ✅ Описывает экспоненциальный рост: вирусы, популяции, технологии

🔗 Связь с другими темами

🔙 Опирается на: степени с рациональными показателями (урок 112) 🔜 Пригодится для: логарифмы, показательные уравнения, производные экспоненты 🌍 Применение: физика (радиоактивный распад), биология (рост бактерий), экономика (сложные проценты), IT (алгоритмы)

Понял тему? Закрепи в боте! 🚀

Попрактикуйся на задачах и получи персональные рекомендации от AI

💪 Начать тренировку
💬 Есть вопрос? Спроси бота!